Abstract

There have been numerous reports of neurological assessments of post-concussed athletes and many deploy some type of reaction time assessment. However, most of the assessment tools currently deployed rely on consumer-grade computer systems to collect this data. In a previous report, we demonstrated the inaccuracies that typical computer systems introduce to hardware and software to collect these metrics with robotics (Holden et al, 2020). In that same report, we described the accuracy of a tactile based reaction time test (administered with the Brain Gauge) as approximately 0.3 msec and discussed the shortcoming of other methods for collecting reaction time. The latency errors introduced with those alternative methods were reported as high as 400 msec and the system variabilities could be as high as 80 msec, and these values are several orders of magnitude above the control values previously reported for reaction time (200-220msec) and reaction time variability (10-20 msec). In this report, we examined the reaction time and reaction time variability from 396 concussed individuals and found that there were significant differences in the reaction time metrics obtained from concussed and non-concussed individuals for 14-21 days post-concussion. A survey of the literature did not reveal comparable sensitivity in reaction time testing in concussion studies using alternative methods. This finding was consistent with the prediction put forth by Holden and colleagues with robotics testing of the consumer grade computer systems that are commonly utilized by researchers conducting reaction time testing on concussed individuals. The significant difference in fidelity between the methods commonly used by concussion researchers is attributed to the differences in accuracy of the measures deployed and/or the increases in biological fidelity introduced by tactile based reaction times over visually administered reaction time tests. Additionally, while most of the commonly used computerized testing assessment tools require a pre-season baseline test to predict a neurological insult, the tactile based methods reported in this paper did not utilize any baselines for comparisons. The reaction time data reported was one test of a battery of tests administered to the population studied, and this is the first of a series of papers that will examine each of those tests independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call