Abstract

This paper reports two specific improvements in the finite-dimensional nonlinear dynamical modeling of marine thrusters. Previously reported four-quadrant models have employed thin airfoil theory considering only axial fluid flow and using sinusoidal lift/drag curves. First, we present a thruster model incorporating the effects of rotational fluid velocity and inertia on thruster response. Second, we report a novel method for experimentally determining nonsinusoidal lift/drag curves. The model parameters are identified using experimental thruster data (force, torque, and fluid velocity). The models are evaluated by comparing experimental performance data with numerical model simulations. The data indicates that thruster models incorporating both reported enhancements provide superior accuracy in both transient and steady-state responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.