Abstract

An accurate fault location algorithm for parallel transmission lines, using fundamental frequency components of post-fault voltage and current measured at one terminal, is described in this paper. Parallel transmission lines can be decoupled into the common component net and differential component net. In differential component net, the current distributing coefficient is a function of fault distance, and the differential component current at the fault point can be expressed in terms of the current at the local terminal. Therefore, for asymmetrical faults, the phase fault current can also be expressed as a function of local terminal current and fault distance. With the fault boundary conditions for a given fault type, the fault location equations can then be derived. Based on distributed parameter line model, the proposed algorithm achieves superior locating accuracy, with mutual coupling between circuits, source impedance and fault resistance having very little influence on the locating accuracy. The performance of new algorithm is verified by computer simulation results for transposed and non-transposed lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call