Abstract
This paper deals with an accurate experimental investigation of the optical sensing behavior of a microwave low-noise amplifier (LNA). The tested amplifier, employing a commercial InGaAs pHEMT has been analyzed in terms of the scattering parameters and the noise figure. The analysis has been carried out by observing how the device behavior is influenced by a continuous wave laser illumination for different optical wavelengths, power levels, and bias conditions. It has been assessed that the LNA performance is significantly influenced by the light exposure with optical effects more pronounced at higher wavelengths for a fixed incident power. Upon applying the recommended bias conditions of the sensing amplifier, the main changes consist of a degradation of the noise figure and gain. As opposite to this, an overall performance enhancement is clearly recognizable with the amplifier biased at the transistor pinch-off. The results obtained in the present work fully confirm a theoretical analysis previously carried out by employing different devices and LNA design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.