Abstract

Aiming at the challenges to accurately simulate complex friction models, link dynamics, and part uncertainty for high-precision robot-based manufacturing considering mechanical deformation and resonance, this study proposes a high-precision dynamic identification method with a double encoder. Considering the influence of the dynamic model of the manipulator on its control accuracy, a three-iterative global parameter identification method based on the least square method and GMM (Gaussian Mixture Model) under the optimized excitation trajectory is proposed. Firstly, a bidirectional friction model is constructed to avoid using residual torque to reduce the identification accuracy. Secondly, the condition number of the block regression matrix is used as the optimization objective. Finally, the joint torque is theoretically identified with the weighted least squares method. A nonlinear model distinguishing between high and low speeds was established to fit the nonlinear friction of the robot. By converting the position and velocity of the motor-side encoder to the linkage side using the deceleration ratio, the deformation quantity could be calculated based on the discrepancy between theoretical and actual values. The GMM algorithm is used to compensate the uncertainty torque that was caused by model inaccuracy. The effectiveness of the proposed method is verified by a simulation and experiment on a 6-DoF industrial robot. Results prove that the proposed method can enhance the online torque estimation performance by up to 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call