Abstract

The accurate forecast of the photovoltaic generation (PVG) process is essential to develop optimum installation sizing and pragmatic energy planning and management. This paper proposes a PVG forecast model for a PVG/Battery installation. The forecasting strategy is built on a Medium-Term Energy Forecasting (MTEF) approach refined dynamically every hour (Dynamic Medium-Term Energy Forecasting (DMTEF)) and adjusted by means of a Short-Term Energy Forecasting (STEF) strategy. The MTEF predicts the generated energy for a day ahead based on the PVG of the last 15 days. As for STEF, it is a combination between PVG Short-Term (ST) forecasting and DMTEF methods obtained by selecting the least inaccurate PVG estimation every 15 minutes. The algorithm results are validated by measures taken on a 3 KWp standalone PVG/Battery installation. The proposed approaches have been integrated into a management algorithm in order to make a pragmatic decision to ensure load supply considering relevant constraints and priorities and guarantee the battery safety. Simulation results show that STEF provides accurate results compared to measures in stable and perturbed days. The NMBE (Normalized Mean Bias Error) is equal to −0.58% in stable days and 26.10% in perturbed days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.