Abstract

Double-diffused lateral MOS transistors with a drain-source breakdown voltage larger than 280 V have been integrated in an epitaxial junction isolated IC process. For these devices a four-component dc model suited for computer-aided circuit design (CACD) is developed based upon 2-D device simulation. The nonhomogeneously doped backgate is well described by two cascoded MOS transistors with different threshold voltages and gain factors. In the drift region the nonlinear dependence of the electron drift velocity on the applied electrical field is taken into account, and modulation of the on-resistance caused by a varying substrate voltage is incorporated properly. In order to model the characteristics in the entire range of operation, 10 parameters have to be optimized. The method for the parameter extraction is discussed, and a comparison between measured I-V characteristics and calculated values according to the model is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.