Abstract
In this paper, we propose a new method to super-resolve low resolution human body images by learning efficient multi-scale features and exploiting useful human body prior. Specifically, we propose a lightweight multi-scale block (LMSB) as basic module of a coherent framework, which contains an image reconstruction branch and a prior estimation branch. In the image reconstruction branch, the LMSB aggregates features of multiple receptive fields so as to gather rich context information for low-to-high resolution mapping. In the prior estimation branch, we adopt the human parsing maps and nonsubsampled shearlet transform (NSST) sub-bands to represent the human body prior, which is expected to enhance the details of reconstructed human body images. When evaluated on the newly collected HumanSR dataset, our method outperforms state-of-the-art image super-resolution methods with ∼8× fewer parameters; moreover, our method significantly improves the performance of human image analysis tasks (e.g. human parsing and pose estimation) for low-resolution inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.