Abstract

An unsplit-field and accurate Crank–Nicolson cycle-sweep-uniform finite-difference time-domain (CNCSU-FDTD) method based on the complex-frequency-shifted perfectly matched layer (CFS-PML) is proposed. It is applied to 3-D low-frequency subsurface electromagnetic sensing problems. The presented CNCSU-FDTD takes advantage of both CFS-PML and unconditionally stable CN method so that it can attenuate evanescent waves, eliminate late-time reflections, and overcome the stability limits of the FDTD method. The time step intervals in CNCSU-FDTD can be 1000 times larger than that in the regular FDTD for the low-frequency sensing centered at 25 Hz while remaining accurate. Several 3-D numerical examples in the airborne transient electromagnetics system have been demonstrated to validate the proposed method. The CFS-PML-based CNCSU-FDTD method not only attains good accuracy but also saves several dozen times of CPU time as compared with the regular FDTD method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.