Abstract
We study some ergodicity property of zero-sum stochastic games with a finite state space and possibly unbounded payoffs. We formulate this property in operator-theoretical terms, involving the solvability of an optimality equation for the Shapley operators (i.e., the dynamic programming operators) of a family of perturbed games. The solvability of this equation entails the existence of the uniform value, and its solutions yield uniform optimal stationary strategies. We first provide an analytical characterization of this ergodicity property, and address the generic uniqueness, up to an additive constant, of the solutions of the optimality equation. Our analysis relies on the theory of accretive mappings, which we apply to maps of the form $Id - T$ where $T$ is nonexpansive. Then, we use the results of a companion work to characterize the ergodicity of stochastic games by a geometrical condition imposed on the transition probabilities. This condition generalizes classical notion of ergodicity for finite Markov chains and Markov decision processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.