Abstract

In-flight reports on Low Level Wind Shear (LLWS) received from aircrafts are used to issue wind shear alerts for all subsequent landing aircrafts as per standing guidelines of International Civil Aviation Organisation (ICAO). In this paper, winds reported by aircrafts at 1000 and 1800 ft. are used to validate the wind estimated from DWR measured radial wind data employing standard algorithms. Turbulence indices and parameters have been computed independently using conventional (RS/RW) upper air data, aircraft measured winds and DWR estimated winds and compared these with wind shear induced turbulence reported by aircrews. Mean power law (wind escalation law) profiles in the boundary layer have been arrived at for unstable and stable atmospheric conditions.
 
 Three dimensional shear (3DS) upto 600 m a.g.l. has been worked out from DWR measured radial velocity data and compared with wind shear computed from RS/RW and aircraft measured winds and DWR estimated winds. It is found that 3DS values of more than 16 * 10-3 s-1 predict well the occurrence of moderate turbulence. Contrary to the general belief that wind shear is a short lived phenomenon which may last for a few minutes only, it has been observed that incidences of LLWS and induced moderate turbulence lasting more than 10 hrs are not at all uncommon over Chennai aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call