Abstract

The access control (AC) system in an IoT (Internet of Things) context ensures that only authorized entities have access to specific devices and that the authorization procedure is based on pre-established rules. Recently, blockchain-based AC systems have gained attention within research as a potential solution to the single point of failure issue that centralized architectures may bring. Moreover, zero-knowledge proof (ZKP) technology is included in blockchain-based AC systems to address the issue of sensitive data leaking. However, current solutions have two problems: (1) systems built by these works are not adaptive to high-traffic IoT environments because of low transactions per second (TPS) and high latency; (2) these works cannot fully guarantee that all user behaviors are honest. In this work, we propose a blockchain-based AC system with zero-knowledge rollups to address the aforementioned issues. Our proposed system implements zero-knowledge rollups (ZK-rollups) of access control, where different AC authorization requests can be grouped into the same batch to generate a uniform ZKP, which is designed specifically to guarantee that participants can be trusted. In low-traffic environments, sufficient experiments show that the proposed system has the least AC authorization time cost compared to existing works. In high-traffic environments, we further prove that based on the ZK-rollups optimization, the proposed system can reduce the authorization time overhead by 86%. Furthermore, the security analysis is presented to show the system's ability to prevent malicious behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.