Abstract

Nazarbayev University (NU) in Astana, Kazakhstan, is planning to build a new multi-MV, ∼10 to several hundred GW/cm2 ion accelerator facility which will be used in studies of material properties at extreme conditions relevant to ion-beam-driven inertial fusion energy, and other applications. Two design options have been considered. The first option is a 1.2 MV induction linac similar to the NDCX-II at LBNL, but with modifications, capable of heating a 1 mm spot size thin targets to a few eV temperature. The second option is a 2 - 3 MV, ∼200 kA, single-gap-diode proton accelerator powered by an inductive voltage adder. The high current proton beam can be focused to ∼1 cm spot size to obtain power densities of several hundred GW/cm2, capable of heating thick targets to temperatures of tens of eV. In both cases, a common requirement to achieving high beam intensity on target and pulse length compression is to utilize beam neutralization at the final stage of beam focusing. Initial experiments on pulsed ion beam neutralization have been carried out on a 0.3 MV, 1.5 GW single-gap ion accelerator at Tomsk Polytechnic University with the goal of creating a plasma region in front of a target at densities exceeding ∼1012 cm-3.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.