Abstract

Randomize-then-optimize (RTO) is widely used for sampling from posterior distributions in Bayesian inverse problems. However, RTO may be computationally intensive for complexity problems due to repetitive evaluations of the expensive forward model and its gradient. In this work, we present a novel strategy to substantially reduce the computation burden of RTO by using a goal-oriented deep neural networks (DNN) surrogate approach. In particular, the training points for the DNN-surrogate are drawn from a local approximated posterior distribution, and it is shown that the resulting algorithm can provide a flexible and efficient sampling algorithm, which converges to the direct RTO approach. We present a Bayesian inverse problem governed by a benchmark elliptic PDE to demonstrate the computational accuracy and efficiency of our new algorithm (i.e., DNN-RTO). It is shown that with our algorithm, one can significantly outperform the traditional RTO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.