Abstract
We discuss local convergence of Newton’s method to a singular solution x * of the nonlinear equations F(x) = 0, for $$F:{\mathbb{R}}^n \rightarrow {\mathbb{R}}^n$$. It is shown that an existing proof of Griewank, concerning linear convergence to a singular solution x * from a starlike domain around x * for F twice Lipschitz continuously differentiable and x * satisfying a particular regularity condition, can be adapted to the case in which F′ is only strongly semismooth at the solution. Further, Newton’s method can be accelerated to produce fast linear convergence to a singular solution by overrelaxing every second Newton step. These results are applied to a nonlinear-equations reformulation of the nonlinear complementarity problem (NCP) whose derivative is strongly semismooth when the function f arising in the NCP is sufficiently smooth. Conditions on f are derived that ensure that the appropriate regularity conditions are satisfied for the nonlinear-equations reformulation of the NCP at x *.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.