Abstract

Radiation therapy, either alone or combined with surgery or chemotherapy, is one of the main treatment modalities for cancer. Intensity-modulated radiation therapy (IMRT) is an advanced form of radiation therapy, where the patient is irradiated using non-uniform radiation fields from selected beam angle directions. The goal of IMRT is to eradicate all cancer cells by delivering a radiation dose to the tumor volume, while attempting to spare, simultaneously, the surrounding organs and tissues. Although the use of non-uniform radiation fields can favor organ sparing, the selection of appropriate irradiation beam angle directions – beam angle optimization – is the best way to enhance organ sparing. The beam angle optimization (BAO) problem is an extremely challenging continuous non-convex multi-modal optimization problem. In this study, we present a novel approach for the resolution of the BAO problem, using a multistart derivative-free framework for a more thoroughly exploration of the search space of the highly non-convex BAO problem. As the objective function that drives the BAO problem is expensive in terms of computational time, and a multistart approach typically implies a large number of function evaluations, an accelerated framework is explored. A clinical case of an intra-cranial tumor treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the benefits of the accelerated multistart approach proposed for the BAO problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call