Abstract

Six plastic films were exposed to accelerated sunlight while in simulated aquatic environments to determine the effects of chemical composition and environment on the disintegration rates. An environment of UV light/no water was used as a control to determine if the microorganisms in the aquatic systems enhanced the breakdown of the plastic films. The disintegration rate of the plastics was determined by monitoring changes in selected physical properties. The plastics included two conventional plastics commonly used in packaging (LDPE and polystyrene) and four plastics enhanced to have more rapid breakdown in the environment (2% ECO, 10% ECO, PE with ketone graft, and PE with starch). The two ECO copolymers had a significantly faster loss of physical properties than the other plastics evaluated in this study. Degradation was influenced by environmental conditions. Those plastics that showed a change in physical properties had a greater change faster in the UV light/no water than in the environments where water was present. Plastics on the surface of the water showed a more rapid loss of properties than those samples partially or completely submerged. This can be attributed to decreased light intensity and the lack of heat buildup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.