Abstract

This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG) subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; and (iii) using a novel test to check whether the penalty parameter of the AL function should be increased. Under several mild assumptions involving the dampening factor and the under-relaxation constant, it is shown that the AIDAL method generates an approximate stationary point of the constrained problem in $$\mathcal{O}(\varepsilon ^{-5/2}\log \varepsilon ^{-1})$$ iterations of the ACG subroutine, for a given tolerance $$\varepsilon >0$$ . Numerical experiments are also given to show the computational efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.