Abstract

In the realm of industrial automation, corrosion represents one of the primary modes of failure, especially in the case of armored thermocouples exposed to temperatures ranging between 1073.15–1373.15 K. In this context, the selection of metal materials that can withstand high-temperature oxidation and corrosion is of paramount importance. Typically, the corrosion resistance of a given metal material is assessed by measuring the “annual corrosion rate” or “corrosion depth”, which can provide an estimated life expectancy value. However, such an approach fails to account for the individual characteristics of the material, and thus does not conform to objective laws. Rather, the corrosion life of a batch of metallic materials should follow the Weibull distribution, or possibly a normal distribution, as per recent studies that have examined the high-temperature oxidation corrosion mechanism of machine or core components. This investigation effectively combines the standard approach for evaluating metal corrosion resistance in the field of materials with the method of assessing component life in the domain of reliability. Furthermore, we consider the individual differences among materials and provide the life distribution function of metals in corrosive environments and thereby refine the evaluation of metal corrosion resistance. This study ultimately establishes a thermocouple accelerated life evaluation model that enhances the accuracy and efficiency of life evaluations for related products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call