Abstract

Process awareness is an essential success factor in any type of business. Process mining uses event data to discover and analyze actual business processes. Although process mining is growing fast and it has already become the basis for a plethora of commercial tools, research has not yet sufficiently addressed the privacy concerns in this discipline. Most of the contributions made to privacy-preserving process mining consider an intra-organizational setting, where a single organization wants to safely publish its event data so that process mining experts can analyze the data and provide insights. However, in real-life settings, organizations need to collaborate for performing their processes, e.g., a supply chain process may involve many organizations. Therefore, event data and processes are often distributed over several partner organizations, yet organizations hesitate to share their data due to privacy and confidentiality concerns. In this paper, we introduce an abstraction-based approach to support privacy-aware process mining in inter-organizational settings. We implement our approach and demonstrate its effectiveness using real-life event logs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.