Abstract
The selection of branching variables is a key component of branch-and-bound algorithms for solving mixed-integer programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their “LP gains”, which is the dual bound improvement obtained after branching on a variable. There are various ways of selecting variables depending on their LP gains. However, all methods are evaluated empirically. In this paper we present a theoretical model for the selection of branching variables. It is based upon an abstraction of MIPs to a simpler setting in which it is possible to analytically evaluate the dual bound improvement of choosing a given variable. We then discuss how the analytical results can be used to choose branching variables for MIPs, and we give experimental results that demonstrate the effectiveness of the method on MIPLIB 2010 “tree” instances where we achieve a $$5\%$$ geometric average time and node improvement over the default rule of SCIP, a state-of-the-art MIP solver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.