Abstract

Exotic annual brome invasion has been well studied in western North American rangelands, particularly for Bromus tectorum L. invasion in sagebrush (Artemisia tridentata) grasslands. We examined both aboveground and belowground properties in native sagebrush grassland and adjacent areas dominated by exotic annual bromes (B. tectorum L. and Bromus japonicus Thunb.) to better understand the fundamental ecological differences between native and invaded areas. Field sites were located in north central Wyoming, USA, and plots were established in areas that had been historically subject to wildfire and either (1) recolonized by native sagebrush grassland vegetation or (2) invaded by exotic annual bromes. We employed measures of vegetation community structure as well as soil physical, chemical, and microbiological properties. Plots with greater than 20 % exotic annual brome cover had significantly less cover of all native vegetation functional groups resulting in lower richness and evenness than native plots. Invaded plots also had low diversity plant communities that were continuous and uniform across space. Soils beneath invaded plant communities had higher infiltration rates, higher levels of total nitrogen, and a lower C/N ratio than the native soils. Invaded soils also had 90–96 % lower abundance of all soil microbial groups measured by phospholipid fatty acid. We conclude that areas dominated by exotic annual bromes display different aboveground and belowground properties compared to the native community, and these changes possibly include spatial and temporal shifts in soil resources and organic matter processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call