Abstract
Wind power curve (WPC) is established through data collected from the Supervisory Control and Data Acquisition (SCADA) system of each wind turbine, which can be used to analyze the operation status. However, numerous outliers are contained in SCADA data caused by wind turbine failures, shutdown maintenance or other extreme conditions to deform the wind power curve. This paper proposes a data cleaning algorithm for wind turbine abnormal data based on wind power curve image by color space conversion and image feature detection. Considering wind speed, wind power and data frequency, a three-dimensional (3D) WPC image is constructed. The scattered outliers are cleared by their statistical characteristics. The Canny edge detection and Hough transform are introduced to extract image features of stacked outliers and locate them accurately. The proposed algorithm is compared with three common outlier detection algorithms, including two data-based algorithms and an image-based algorithm. Extensive experiments conducted on the data of 22 wind turbines from two different wind farms in China indicate the efficiency, stability and reliability of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.