Abstract

This paper proposes a robotics-inspired method to enhance sampling of native-like protein conformations when employing only amino-acid sequence. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and the rugged energy surface of the protein conformational space. The contribution of this work is a novel two-layered method to enhance the sampling of geometrically-distinct lowenergy conformations at a coarse-grained level of detail. The method grows a tree in conformational space reconciling two goals: (i) guiding the tree towards lower energies and (ii) not oversampling geometrically-similar conformations. Discretizations of the energy surface and a low-dimensional projection space are employed to select more often for expansion low-energy conformations in under-explored regions of the conformational space. The tree is expanded with low-energy conformations through a Metropolis Monte Carlo framework that uses a move set of physical fragment configurations. Testing on sequences of seven small-to-medium structurally-diverse proteins shows that the method rapidly samples native-like conformations in a few hours on a single CPU. Analysis shows that computed conformations are good candidates for further detailed energetic refinements by larger studies in protein engineering and design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call