Abstract

Robotic phantoms enable advanced physical examination training before using human patients. In this article, we present an abdominal phantom for palpation training with controllable stiffness liver nodules that can also sense palpation forces. The coupled sensing and actuation approach is achieved by pneumatic control of positive-granular jammed nodules for tunable stiffness. Soft sensing is done using the variation of internal pressure of the nodules under external forces. This article makes original contributions to extend the linear region of the neo-Hookean characteristic of the mechanical behavior of the nodules by 140% compared to no-jamming conditions and to propose a method using the organ level controllable nodules as sensors to estimate palpation position and force with a root-mean-square error of 4% and 6.5%, respectively. Compared to conventional soft sensors, the method allows the phantom to sense with no interference to the simulated physiological conditions when providing quantified feedback to trainees, and to enable training following current bare-hand examination protocols without the need to wear data gloves to collect data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.