Abstract

An accurate potential energy surface for the ground electronic state of SH3 system has been constructed with 41,882 high level ab initio energy points and the neural network fitting method. The time-dependent wave packet method has been used to calculate the first state-to-state differential cross sections for the title reaction up to 1.2 eV in full dimensions, based on the reactant-product decoupling scheme. It is found that the majority of H2 S are produced in the ground vibrational state, with a large fraction of available energy for the reaction ending up as product translational motion. The differential cross sections at the threshold energy are dominated by a very narrow peak in the backward direction. With the increase of collision energy, the width of the angular distribution increases considerably, which is a typical feature of a direct reaction via abstract mechanism, similar to the H2 + OH → H2 O + H reaction. © 2018 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.