Abstract

To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]acenaphthylene (4), fluoranthene (5), and cyclopenta[c,d]fluoranthene (6). For the related compounds 1-4 and 5,6 the total resonance energies (according to Pauling's definition) are similar. Partitioning of the total resonance energy in contributions from the possible 4n + 2 and 4n pi-electron conjugated circuits shows that only the 6pi-electron conjugated circuits (benzene-like) contribute to the resonance energy. The results show that cyclopenta-fusion does not extend the pi system in the ground state; the five-membered rings act as peri-substituents. As a consequence, the differences in (total) resonance energy do not coincide with the differences in thermodynamic stability. Notwithstanding, the relative energies of the Kekule structures can be estimated using Randic's conjugated circuits model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.