Abstract

The current state-of-the-art quantum mechanics methodologies were applied to derive information on the bulk and surface properties of the P2-type layered oxide Na0.85Li0.17Ni0.21Mn0.64O2 (NLNMO), a cathode material. The special quasi-random structure (SQS) approach was employed to identify the arrangement of Li, Ni, and Mn ions in a supercell containing 115 atoms. Both the cell parameters and atomic positions were determined from DFT-PBE+U calculations to highlight specific distortions induced by the dopants (Ni and Li). The analysis of atomic partial charges and atomic magnetic moments revealed that Li has a purely structural role, while Ni and Mn actively participate in both redox processes and electronic conduction. Using a new surface slab model, the interaction between the layered Na0.85Li0.17Ni0.21Mn0.64O2 (001) surface and the Na ions was examined to identify the most favorable adsorption sites and the possible paths for the migration of the Na ions on the electrode surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call