Abstract

An ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulation was performed on a single molecule of hydrogen peroxide immersed in water to investigate its stability in aqueous solution, since pure hydrogen peroxide is very unstable. The structural parameters such as radial distribution functions (RDFs), coordination number distributions (CNDs) and angular distribution functions (ADFs) indicate the existence of ∼4 hydrogen bonds between hydrogen peroxide and water molecules, with both molecules acting as hydrogen bond donors and hydrogen bond acceptors. The overall hydration shell consists of ∼6 water molecules surrounding the hydrogen peroxide molecule. The analysis of the hydrogen bond dynamics verified the presence of strong hydrogen bonds compared to pure water, thus confirming the stabilization of hydrogen peroxide in aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.