Abstract

Potential energy curves (PECs) for the ground state (X2Σ+) and the four excited electronic states (A2Π, B2Π, C2Σ+, 4Π) of a BeH molecule are calculated using the multi-configuration reference single and double excited configuration interaction (MRCI) approach in combination with the aug-cc-pVTZ basis sets. The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm, and the equilibrium bond length Re and the vertical excited energy Te are determined directly. It is evident that the X2Σ+, A2Π, B2Π, C2Σ+ states are bound and 4Π is a repulsive excited state. With the potentials, all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero (J = 0) by numerically solving the radial Schrödinger equation of nuclear motion. Then the spectroscopic data are obtained including the rotation coupling constant ωe, the anharmonic constant ωexe, the equilibrium rotation constant Be, and the vibration-rotation coupling constant αe. These values are compared with the theoretical and experimental results currently available, showing that they are in agreement with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.