Abstract
Gamow shell model (GSM) is usually performed within the Woods-Saxon (WS) basis in which the WS parameters need to be determined by fitting experimental single-particle energies including their resonance widths. In the multi-shell case, such a fit is difficult due to the lack of experimental data of cross-shell single-particle energies and widths. In this paper, we develop an ab-initio GSM by introducing the Gamow Hartree-Fock (GHF) basis that is obtained using the same interaction as the one used in the construction of the shell-model Hamiltonian. GSM makes use of the complex-momentum Berggren representation, then including resonance and continuum components. Hence, GSM gives a good description of weakly bound and unbound nuclei. Starting from chiral effective field theory and employing many-body perturbation theory (MBPT) (called nondegenerate Qˆ-box folded-diagram renormalization) in the GHF basis, a multi-shell Hamiltonian (sd-pf shells in this work) can be constructed. The single-particle energies and their resonance widths can also been obtained using MBPT. We investigated 23−28O and 23−31F isotopes, for which multi-shell calculations are necessary. Calculations show that continuum effects and the inclusion of the pf shell are important elements to understand the structure of nuclei close to and beyond driplines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physics Letters B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.