Abstract

A complete optimization of the nitromethane geometry at the HF/6-31G and HF/ 6-31G* (5D) levels for staggered (one CH bond situated in a plane perpendicular to the plane of the heavy atoms) and eclipsed conformations is reported. The geometrical parameters obtained for the staggered conformation are in quite good agreement with the microwave structure (ref. 1). The effect of electron correlation on the energy difference between the two conformers is estimated using single point MP4SDQ/6-31G* calculations at the 6-31G geometry. The harmonic force field for both conformers are calculated at the HF/6-31G//HF/6-31G level. Taking into account the known overestimation of the vibrational frequencies by ∼20% in ab initio calculations, the experimental frequency assignment is confirmed. The six scale factors for the force field were evaluated using the experimental frequencies of nitromethane and nitromethane-d 3 (ref. 2). The vibrational frequencies for the five isotopomers of staggered nitromethane are determined with the scaled quantum mechanical force field (SQMFF). A detailed interpretation of conformational effects in the IR spectrum of crystalline CHD 2NO 2 is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call