Abstract
An a-Si:H/SiGe/Si punchthrough heterojunction phototransistors (PTHPTs), responding to a wavelength of 850 nm, have been proposed and demonstrated in this work. The dramatic difference between PTHPTs and conventional heterojunction phototransistors is that the base is completely depleted in the PTHPTs, thus a larger optical gain is achieved due to the lack of a neutral base. Furthermore, the use of low-temperature a-Si:H instead of conventional crystalline silicon, a strained SiGe can be preserved at the interface of base and emitter, allowing ultrashallow junctions and abrupt doping profiles. Another advantage is that the a-Si:H can provide large valence-band discontinuity between base and emitter, avoiding photogenerated holes injected from base to emitter, and hence a larger collector current. In addition, we employed a thin Al-coating covered on the surface of emitter to enhance the collection of photogenerated holes. In comparison to the PTHPTS without the thin-Al coating, the optical gain of PTHPTs with thin-Al coating is increased from 922 to 3970 at 5-V bias voltage, responding to a light source of 850 nm with 0.028 mW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.