Abstract
Abstract We present the first a priori error analysis of a new method proposed in Cockburn & Wang (2017, Adjoint-based, superconvergent Galerkin approximations of linear functionals. J. Comput. Sci., 73, 644–666), for computing adjoint-based, super-convergent Galerkin approximations of linear functionals. If $J(u)$ is a smooth linear functional, where $u$ is the solution of a steady-state diffusion problem, the standard approximation $J(u_h)$ converges with order $h^{2k+1}$, where $u_h$ is the Hybridizable Discontinuous Galerkin approximation to $u$ with polynomials of degree $k>0$. In contrast, numerical experiments show that the new method provides an approximation that converges with order $h^{4k}$, and can be computed by only using twice the computational effort needed to compute $J(u_h)$. Here, we put these experimental results in firm mathematical ground. We also display numerical experiments devised to explore the convergence properties of the method in cases not covered by the theory, in particular, when the solution $u$ or the functional $J(\cdot )$ are not very smooth. We end by indicating how to extend these results to the case of general Galerkin methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.