Abstract

Stability condition is a more restrictive constraint that leads to unnecessary small-time steps with respect to the accuracy and results in computational time wastage. We propose a node by node adaptive time scheme to relax the stability constraint enabling a larger global time step for all the nodes. A nonlinear procedure for optimising both the schemes in time and space is proposed in view of increasing the numerical efficiency and reducing the computational time. The method is based on a four-parameter family of schemes we shall tune in function of the physical data (velocity, diffusion), the characteristic size in time and space, and the local regularity of the function leading to a nonlinear procedure. The a posteriori strategy we adopt consists in, given the solution at time tn, computing a candidate solution with the highest accurate schemes in time and space for all the nodes. Then, for the nodes that present some instabilities, both the schemes in time and space are modified and adapted in order to preserve the stability with a large time step. The updated solution is computed with node-dependent schemes both in time and space. For the sake of simplicity, only convection-diffusion problems are addressed as a prototype with a two-parameters five-points finite difference method for the spatial discretisation together with an explicit time two-parameters four-stages Runge–Kutta method. We prove that we manage to obtain an optimal time-step algorithm that produces accurate numerical approximations exempt of non-physical oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.