Abstract

Realizing efficient red/near-infrared (NIR) electroluminescence (EL) by precisely modulating molecular aggregations of thermally activated delayed fluorescence (TADF) emitters is an attractive pathway, yet the molecular designs are elusive. Here, a new approach is proposed to manage molecular aggregation via a mild-twist acceptor-donor-acceptor (A-D-A)-type molecular design. A proof-of-concept TADF molecule, QCN-PhSAC-QCN, is developed that furnishes a fast radiative rate and obvious aggregation-induced emission feature. Its emission bands can be facilely shifted from intrinsic yellow to the red/NIR region via fine-tuning doping levels and molecular aggregates while maintaining elegant photoluminescence quantum yields benefiting from suppressed exciton annihilation processes. As a result, a QCN-PhSAC-QCN-based organic light-emitting diode (OLED) exhibits a record-setting external quantum efficiency (EQE) of 39.1% at a doping ratio of 10wt.%, peaking at 620nm. Moreover, its nondoped NIR OLED affords a champion EQE of 14.3% at 711nm and retains outstanding EQEs of5.40% and 2.35% at current densities of 10 and 100 mA cm-2 , respectively, which are the highest values among all NIR-TADF OLEDs at similar density levels. This work validates the feasibility of such mild-twist A-D-A-type molecular design for precisely controlling molecular aggregation while maintaining high efficiency, thus providing a promising pathway for high-performance red/NIR TADF OLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call