Abstract

High performance liquid chromatography (HPLC) combined with mass spectrometry (MS) was used to analyse deposited pigments (including chlorophyll a, phaeophytin a, canthaxanthin, echinenone, zeaxanthin, scytonemin and mycosporine‐like amino acids) from two sediment profiles of ponds in the Ross Sea area, East Antarctica. We explored the sources and characteristics of each pigment, reconstructed an 800‐year record of ultraviolet radiation (UVR) and total incoming light intensity, and identified the possible factors that may have influenced historical UVR changes in this region. The results indicated at least four UVR peaks during the past 800 years, corresponding to c. AD 1950–2000, 1720–1790, 1560–1630 and 1350–1480, with the intensity from the most recent sediments being the highest. A comparison between the changes in UVR and total incoming light intensity showed similar patterns between AD 1720 and 1830, suggesting that factors controlling the UVR intensity in the Ross Sea area may be related to insolation fluctuation at that time. The two proxies are, however, weakly correlated during other periods. Historically, there is a relationship between the reconstructed UVR and solar activity, but this natural process may be strongly affected by multiple factors, including climate parameter change and anthropogenic activities during the modern times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call