Abstract
A low-energy single-ended duobinary transceiver is proposed for the point-to-point DRAM interface with an energy efficiency of 0.56 pJ/bit at 7 Gb/s. The transmitter power is reduced by decreasing the signal swing of transmission channel to 80 mV and replacing the multiplexer and the binary output driver in the transmitter by a duobinary output driver. A trans-impedance amplifier (TIA) is used at the receiver end of transmission channel. The TIA works as a receiver termination and also amplifies the input signal for subsequent processing. Analysis of the feedback loop delay and the nonlinearity of the TIA shows that they do not impose serious problems. The TIA output signal is applied to a duobinary-to-NRZ converter, which is implemented by using a direct feedback 1-tap DFE circuit with a tap-coefficient of 1.0. The reference voltage of the duobinary-to-NRZ converter is calibrated automatically to enable a small-swing signaling. The proposed transceiver chip in a 65 nm CMOS process works at 4.5 Gb/s with a 3" FR4 microstrip line, and at 7 Gb/s with a 0.6" FR4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.