Abstract
We report results for positron scattering by ground-state atomic hydrogen in the energy range 0 to 80 eV. The calculations have been performed in an 18-state Ps(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d)+H(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d) approximation where the pseudostates (denoted by a bar) have been taken from Fon et al. (1981). Cross sections are presented for elastic scattering, positronium formation, total scattering and ionization. The elastic scattering results are in good agreement with accurate variational numbers at low energies and with other sophisticated, but very different, theoretical approximations at higher energies. We estimate that the elastic cross section is now known to better than 10%. The cross section for positronium formation is dominated by capture into the 1s state and is in fairly good agreement with the measurements of Weber et al. (1994). The results for the total cross section are generally consistent with the upper and lower bounds of Zhou et al. (1994) but are a little larger than other theoretical estimates at the higher energies. There is also a general theoretical problem concerning the degree to which the total cross sections for electrons and positrons merge at energies above 31 eV. The calculated ionization cross section is in agreement with the measurements of Jones et al. (1993).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.