Abstract

Eribulin (Halaven) is the most structurally complex non-peptidic drug made by total synthesis and has challenged preconceptions of synthetic feasibility in drug discovery and development. However, despite decades of research, the synthesis and manufacture of eribulin remains a daunting task. Here, we report syntheses of the most complex fragment of eribulin (C14–C35) used in two distinct industrial routes to this important anticancer drug. Our convergent strategy relies on a doubly diastereoselective Corey–Chaykovsky reaction to affect the union of two tetrahydrofuran-containing subunits. Notably, this process relies exclusively on enantiomerically enriched α-chloroaldehydes as building blocks for constructing the three densely functionalized oxygen heterocycles found in the C14–C35 fragment and all associated stereocenters. Overall, eribulin can now be produced in a total of 52 steps, which is a significant reduction from that reported in both academic and industrial syntheses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call