Abstract

The fine structure of extractable amylose (E-AM) in potato flakes dictates oil uptake during the production of deep-fried crisps from dough made from the flakes, and thus their caloric density. High levels of short E-AM chains increase the extent of amylose crystallization during dough making and increase water binding. Time-domain proton NMR analysis showed that they also cause water to be released at a low rate during deep-frying and thus restrict dough expansion and, most importantly, oil uptake. X-ray micro-computed tomography revealed that this results in high thickness of the crisp solid matrix and reduced pore sizes. Thus, the level of short E-AM chains in potato flakes impacts amylose crystal formation, dough strength and expansion, as well as the associated oil uptake during deep-frying. Based on these results, we advise potato crisp manufacturers to source potato cultivars with high levels of short amylose chains for the production of reduced-calorie crisps and to make well-reasoned process adaptations to control the extractability of potato amylose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.