Abstract

The semi-artificial branched-polysaccharides, amylose-grafted curdlans, were synthesized utilizing an enzymatic polymerization. Both a curdlan main chain and amylose side chains on the polysaccharides maintain the original helical structure as well as the molecular binding ability. Thanks to the difference in their molecular recognition properties between β-1,3-glucan chain and α-1,4-glucan chain, the amylose-grafted curdlans can provide two different orthogonal binding sites within one polymeric system. When a water-soluble polythiophene was mixed with the amylose-grafted curdlan, the polythiophene was twisted in two different modes and therein, fluorescence energy of the polythiophene wrapped by the amylose side chains was successfully transferred to the polythiophene wrapped by the curdlan main chain. We thus concluded that in the dendritic superstructure of this polysaccharide, a self-organized "Janus-type FRET system" was successfully constructed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call