Abstract

BackgroundStarch is the main source of energy in commonly used pig diets. Besides effects related to the extent of starch digestion, also several effects related to variation in digestion rate have recently been demonstrated in non-ruminants. Different rates of starch digestion in animals and in in vitro models have been reported, depending on the botanic origin of starch. Starches from different botanic sources differ widely in structural and molecular properties. Predicting the effect of starch properties on in vitro digestion kinetics based on existing literature is hampered by incomplete characterization of the starches, or by a selective choice of starches from a limited number of botanic sources. This research aimed to analyse the relationships between starch properties and in vitro digestion kinetics of pure starches isolated from a broad range of botanic origins, which are used in non-ruminant diets or have a potential to be used in the future. Therefore we studied starch digestion kinetics of potato, pea, corn, rice, barley, and wheat starches, and analysed the granule diameter, number of pores, type and amount of crystalline structure, amylose content and amylopectin side-chain length of all starches.ResultsMultivariate analysis revealed strong correlations among starch properties, leading us to conclude that effects of most starch characteristics are strongly interrelated. Across all analysed botanic sources, crystalline type and amylopectin chain length showed the strongest correlation with in vitro digestion kinetics. Increased percentages of A–type crystalline structure and amylopectin side chains of DP 6–24 both increased the rate of digestion. In addition, within, but not across, (clusters of) botanic sources, a decrease in amylose content and increase in number of pores correlated positively with digestion kinetics.ConclusionThe type of crystalline structure and amylopectin chain length distribution of starch correlate significantly with digestion kinetics of starches across botanic sources in an in vitro pig model. Variation in digestion kinetics across botanic sources is not additively explained by other starch properties measured, but appears to be confined within botanical sources.

Highlights

  • Starch is the main source of energy in commonly used pig diets

  • By relating all characteristics to the in vitro digestion kinetics of those starches, we aimed to identify, across botanic sources, the starch characteristics that are affecting starch digestion most in starches relevant for non-ruminant feed production

  • Characterization of starch To make a comparison between starches from different botanic sources and their effect on in vitro starch digestion kinetics, 20 starches from different botanic sources were analysed on several characteristics regarding the molecular and granular structure of the starches

Read more

Summary

Introduction

Starch is the main source of energy in commonly used pig diets. Besides effects related to the extent of starch digestion, several effects related to variation in digestion rate have recently been demonstrated in non-ruminants. This research aimed to analyse the relationships between starch properties and in vitro digestion kinetics of pure starches isolated from a broad range of botanic origins, which are used in non-ruminant diets or have a potential to be used in the future. We studied starch digestion kinetics of potato, pea, corn, rice, barley, and wheat starches, and analysed the granule diameter, number of pores, type and amount of crystalline structure, amylose content and amylopectin side-chain length of all starches. Starch is the main source of energy in commonly used diets for non-ruminants Starches in those diets are of various botanic origin, which usually causes variation in digestion rate in the gastro-intestinal tract. Clustered amylopectin side chains and amylose chains are organized in the helix conformation that subsequently forms crystalline structures, which can be divided into three types: A, B and C. Granules vary in the level of porosity and can have openings (pores) on the surface of the granule [12]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.