Abstract

BackgroundRepeated failure of drug candidates targeting Alzheimer’s disease (AD) in clinical trials likely stems from a lack of understanding of the molecular mechanisms underlying AD pathogenesis. Recent research has highlighted synergistic interactions between aggregated amyloid-β (Aβ) and tau proteins in AD, but the molecular details of how these interactions drive AD pathology remain elusive and speculative.MethodsHere, we test the hypothesis that Aβ potentiates intracellular tau aggregation, and show that oligomeric Aβ specifically exacerbates proteopathic seeding by tau. Using tau-biosensor cells, we show that treatment with sub-toxic concentrations of Aβ oligomers, but not monomers or fibrils, “primes” cells, making them more susceptible to tau seeding. The treatment with Aβ oligomers enhances intracellular tau aggregation in a dose-dependent manner when the cells are seeded with either recombinant or brain-derived tau fibrils, whereas little or no aggregation is observed in the absence of Aβ-oligomer priming.ResultsPriming by Aβ oligomers appears to be specific to tau, as α-synuclein seeding is unaffected by this treatment. Aβ oligomer-enhanced tau seeding also occurs in primary mouse neurons and human neuroblastoma cells. Using fluorescently labeled tau seeds, we find that treatment with Aβ oligomers significantly enhances the cellular uptake of tau seeds, whereas a known tau-uptake inhibitor blocks the effect of Aβ on tau uptake.ConclusionThe ability of Aβ to promote tau seeding suggests a specific and plausible mechanism by which extracellular Aβ initiates a deleterious cascade that is unique to AD. These data suggest that the Aβ-mediated potentiation of tau uptake into cells should also be taken into account when designing Aβ-targeted therapeutics.

Highlights

  • Repeated failure of drug candidates targeting Alzheimer’s disease (AD) in clinical trials likely stems from a lack of understanding of the molecular mechanisms underlying AD pathogenesis

  • We explored the mechanism by which Aβ oligomers affect cellular uptake of tau seeds

  • Aβ oligomers promote tau aggregation seeded by tau Repeat domain (RD), full-length tau, or brain extracts from a tauopathy mouse model Following the preparation of different aggregated species of Aβ, we assessed their impact on tau seeding using the HEK293T tau biosensor cell line developed by Diamond and co-workers for monitoring and quantifying intracellular tau aggregation and seeding [34, 35]

Read more

Summary

Introduction

Repeated failure of drug candidates targeting Alzheimer’s disease (AD) in clinical trials likely stems from a lack of understanding of the molecular mechanisms underlying AD pathogenesis. Amyloid plaques and neurofibrillary tangles (NFTs), comprising Aβ and hyperphosphorylated tau, respectively, are the two major hallmarks of Alzheimer’s disease (AD) pathology [1,2,3]. The amyloid cascade hypothesis has posited that Aβ aggregation is the initiating pathologic event in AD [6, 7], biomarker and pathology studies have shown a strong correlation between NFT accumulation, neurodegeneration, and clinical. The interplay between Aβ and tau is exemplified in animal models and biomarker studies of AD patients [13,14,15,16]. Studies in animal models show synergistic enhancement of tau accumulation in the presence of Aβ in the cortex of young mice overexpressing the frontotemporal-dementiaassociated variant P301L-tau.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call