Abstract
Our past work has shown that the C-terminal fragment of amyloid precursor protein (APP) translocated to the nucleus in neurons destined for delayed excitotoxic degeneration. To test whether nuclear APP fragments also play a role in the progressive loss of dopaminergic (DA) substantia nigra compacta (SNc) neurons, we performed unilateral medial forebrain bundle (MFB) transection on APP wild type (WT) and on mice with disruption of the APP gene (KO). In WT mice immunoreactivity for APP C-terminal, β-amyloid and Alz90 epitopes appeared in the nuclei of axotomized DA neurons at 3 days post-lesion (dpl), persisted at 7 dpl and was absent in 14 dpl mice. APP N-terminal immunoreactivity was restricted to the cytosol at all time points, precluding the possibility of full length APP in the nucleus. Nuclear localization of APP epitopes was absent in neurons of the contralateral SNc or in neurons of the ipsilateral ventral tegmental area and SN reticulata. The presence of APP C-terminal and Alz90 domains was confirmed by Western blotting performed on the nuclear fraction of the SN ipsilateral to the axotomy. Quantitative morphometric analysis revealed that WT mice demonstrated earlier and more profound loss of tyrosine hydroxylase+SNc neurons than did KO mice. These data showed that a novel nuclear C-terminal fragment appeared coincident with SNc neuron degeneration, and that APP deficiency correlated with significant neuroprotection in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.