Abstract
Amyloid-like fibrils are studied because of their significance in understanding pathogenesis and creating functional materials. Amyloid-like fibrils have been studied by heating globular proteins at acidic conditions. In the present study, intrinsically disordered α-, β-, and κ-caseins were studied to form amyloid-like fibrils at pH 2.0 and 90 °C. No fibrils were observed for α-caseins, and acid hydrolysis was found to be the rate-limiting step of fibrillation of β- and κ-caseins. An increase of β-sheet structure was observed after fibrillation. Nanomechanic analysis of long amyloid-like fibrils using peak-force quantitative nanomechanical atomic force microscopy showed the lowest and highest Young's modulus for β-casein (2.35 ± 0.29 GPa) and κ-casein (4.14 ± 0.66 GPa), respectively. The dispersion with β-casein fibrils had a viscosity more than 10 and 5 times higher than those of κ-casein and β-lactoglobulin, respectively, at 0.1 s(-1) at comparable concentrations. The current findings may assist not only the understanding of amyloid fibril formation but also the development of novel functional materials from disordered proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.