Abstract

Protein-based biomaterials are attracting broad interest for their remarkable structural and functional properties. Disturbing the native protein's three-dimensional structural stability in vitro and controlling subsequent aggregation is an effective strategy to design and construct protein-based biomaterials. One of the recent developments in regulating protein structural transformation to ordered aggregation is amyloid assembly, which generates fibril-based 1D to 3D nanostructures as functional materials. Especially, the amyloid-like assembly to form films at interfaces has been reported, which is induced by the effective reduction of the intramolecular disulfide bond. The main contribution of this amyloid-like assembly is the large-scale formation of protein films at interfaces and excellent adhesion to target substrates. This review presents the research progress of the amyloid-like assembly to form films and related applications and thereby provides a guide to exploiting protein-based biomaterials. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call