Abstract

Positron emission tomography (PET) imaging studies of Alzheimer's disease (AD) patients show progressive increases of fibrillar Aβ-amyloid. Because current PET ligands underestimate nonfibrillar forms, we assayed soluble Aβ in AD and controls. To identify the mechanisms responsible for soluble Aβ in AD brains, we examined lipid rafts (LRs), where amyloid precursor protein (APP) is enzymatically processed. Frontal cortex was compared with cerebellum, which has minimal AD pathology. Compared with cognitively normal controls (CTL; Braak 0-1), elevations of soluble Aβ40 and Aβ42 were similar for intermediate- and later-stage AD (Braak 2-3 and 4-6). Clinical-grade AD showed a greater increase in soluble Aβ40 than Aβ42 relative to CTL. LR raft yield per gram AD frontal cortex was 20% below that of controls, whereas cerebellar LR did not differ by Braak score. The extensive overlap of soluble Aβ levels in controls with AD contrasts with the PET findings on fibrillar Aβ. These findings further support fibrillar Aβ as a biomarker for AD treatments and show the need for more detailed postmortem analysis of diverse soluble and insoluble Aβ aggregates in relation to PET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call