Abstract
IntroductionVascular dementia is the second most common cause of dementia after Alzheimer’s disease (AD). In addition, it is estimated that almost half of all AD patients have significant cerebrovascular disease comorbid with their AD pathology. We hypothesized that cerebrovascular disease significantly impacts AD pathological progression.MethodsWe used a dietary model of cerebrovascular disease that relies on the induction of hyperhomocysteinemia (HHcy). HHcy is a significant clinical risk factor for stroke, cardiovascular disease and type 2 diabetes. In the present study, we induced HHcy in APP/PS1 transgenic mice.ResultsWhile total β-amyloid (Aβ) load is unchanged across groups, Congophilic amyloid deposition was decreased in the parenchyma and significantly increased in the vasculature as cerebral amyloid angiopathy (CAA; vascular amyloid deposition) in HHcy APP/PS1 mice. We also found that HHcy induced more microhemorrhages in the APP/PS1 mice than in the wild-type mice and that it switched the neuroinflammatory phenotype from an M2a biased state to an M1 biased state. Associated with these changes was an induction of the matrix metalloproteinase protein 2 (MMP2) and MMP9 systems. Interestingly, after 6 months of HHcy, the APP/PS1 mice were cognitively worse than wild-type HHcy mice or APP/PS1 mice, indicative of an additive effect of the cerebrovascular pathology and amyloid deposition.ConclusionsThese data show that cerebrovascular disease can significantly impact Aβ distribution in the brain, favoring vascular deposition. We predict that the presence of cerebrovascular disease with AD will have a significant impact on AD progression and the efficacy of therapeutics.
Highlights
Vascular dementia is the second most common cause of dementia after Alzheimer’s disease (AD)
There was no significant difference between WT and Amyloid precursor protein (APP)/Presenilin 1 (PS1) transgenic mice in the plasma homocysteine levels induced by the diet
We recently described a model in which cortical microhemorrhages, neuroinflammation and cognitive deficits develop when HHcy is induced in C57BL/6 mice, suggesting that the HHcy model is an appropriate model for the study of some forms of Vascular dementia (VaD)
Summary
Vascular dementia is the second most common cause of dementia after Alzheimer’s disease (AD). Vascular dementia (VaD) is a term that encompasses many different causes of vascular disease and dysfunction in the brain that can lead to cognitive impairment [1]. Included in this assortment are stroke, aneurysm, damage due to chronic hypoperfusion and damage due to chronic hypertension. HHcy is induced by administering a diet deficient in vitamins B6 and B12 as well as folate, and supplemented with methionine. This diet drives the metabolic pathway to produce HHcy with minimal breakdown into cysteine
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.