Abstract

The steady state concentration of the Alzheimer's amyloid-beta peptide in the brain represents a balance between its biosynthesis from the transmembrane amyloid precursor protein (APP), its oligomerisation into neurotoxic and stable species and its degradation by a variety of amyloid-degrading enzymes, principally metallopeptidases. These include, among others, neprilysin (NEP) and its homologue endothelin-converting enzyme (ECE), insulysin (IDE), angiotensin-converting enzyme (ACE) and matrix metalloproteinase-9 (MMP-9). In addition, the serine proteinase, plasmin, may participate in extracellular metabolism of the amyloid peptide under regulation of the plasminogen-activator inhibitor. These various amyloid-degrading enzymes have distinct subcellular localizations, and differential responses to aging, oxidative stress and pharmacological agents and their upregulation may provide a novel and viable therapeutic strategy for prevention and treatment of Alzheimer's disease. Potential approaches to manipulate expression levels of the key amyloid-degrading enzymes are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.